澳门新葡新京888882id=”hi-183294″>第六节 免疫应答的调节

免疫应答是机体针对外来抗原产生的一种复杂的排斥过程,与其他生理系统相互配合,共同维持机体内环境的稳定。与其他生理过程一样,免疫应答也受到许多因素的影响和制约。首先,免疫应答受遗传基因的控制;受免疫系统内部各种因素的制约;还要接受宿主整体生理水平的调节。

免疫应答的发生是由抗原刺激免疫系统的细胞开始的。抗原的存在是应答发生的前提,但是抗原在体内可被分解代谢,而浓度逐渐降低,抗体产生也不断下降。已有实验证明,在免疫应答过程中,由于注射大量抗体,清除了抗原,导致抗体分泌细胞数量减少,抗体合成也明显下降。

当第一次用适量抗原给动物免疫,需经一定潜伏期才能在血液中出现抗体,含量低,且维持时间短,很快下降,称这种现象为初次免疫应答。若在抗体下降期再次给以相同抗原免疫时,则发现抗体出现的潜伏期较初次应答明显缩短,抗体含量也随之上升,而且维持时间长,称这种现象为现次免疫应答或回忆应答。由于对抗体分子结构研究的进展,发现初次应答产生的抗体主要是IgM分子,对抗原结合力低,为低亲和性抗体。而再次应答则主要为IgG分子,且为高亲和性抗体。TD抗原可引起再次应答,而TI抗原只能引起初应答。对初次和再次应答现象机制的研究,对抗体特异性、多样性、免疫记忆以及对自身抗原而受性机制等问题的研究,都必须以抗体生成的细胞学为基础。

一、TH细胞的调节作用

二、抗体的调节作用

图11-1初次及再次免疫应答

TH细胞不是一个均一的群体,活化后可分化成TH1、TH2和TH0三种类型。三个类型细胞免疫功能互有差别,尤其TH1、TH2和TH0三种类型。三个类型细胞的免疫功能互有差别,尤其TH1与TH2之间存在相互或促进的作用。因为TH是免疫应答的中心细胞,所以它的活性对整个免疫应答具有调节作用。

抗体的反馈调节作用

表11-2 初次与再次免疫应答特性

TH1产生IL-2、IFN和TNF,作用于各种免疫细胞。IL-2可诱导T细胞分裂增殖,增强细胞免疫应答;但IFN抑制抗体应答,抑制移植排斥反应和迟发型超敏反应。TH2分泌IL-4和IL-5等细胞因子,可诱导B细胞的增殖化,促进抗体产生。由此可见,TH细胞在体液和细胞免疫应答中皆有调控作用,被视为免疫应答的中心调节作用途径。

抗体对免疫应答也有反馈调节作用。抗体是免疫应答的产物,抗体产生之后又可抑制其后的抗体产生。将抗体注入非免疫的机体,可阻止其后注入抗原引起的免疫应答,这一现象在临床上应用成功地预防了新生儿溶血性疾病的发生。该疾病是因母子间RH血型不符引起的。应用抗Rh因子抗体给分娩Rh+胎儿的Rh-产妇注射,由于分娩过程中进入母体Rh抗原被注入的Rh抗体所清除,因而抑制了Rh母亲进一步产生抗体,也就防止了因Rh抗体通过胎盘使下次妊娠的Rh+胎儿产生溶血症。

特性初次再次抗原呈递非B细胞B细胞抗原浓度高低抗体产生
延迟相5~10天2~5天Ig类别主要为IgMIgG、IgA等亲和力低高无关抗体多少

二、抗体分子的调节作用

免疫应答过程中用血浆交换法去除循环血中的抗体,使血液中的抗体浓度不断降低,可促使抗体产生增加。注射IgG抗体可明显促使抗体形成细胞数量下降,可反馈控制抗体过度合成,这可能是由于抗体结合抗原后降低抗原的刺激作用。

二、抗体产生的细胞学基础

抗体是B细胞应答的效应产物,可反过来对特异性体液免疫应答产生反馈性抑制作用。抗体与相应抗原结合所形成的免疫复合物可结合到B细胞的表面Ig上,向胞内传入抑制信号,影响B细胞的活化和抗体的产生。例如将Rh抗体注射给刚分娩Rh+婴儿的Rh-母亲,则可阻止母亲产生Rh抗体,从而预防下一次妊娠时可能发生的新生儿溶血。

抗原抗体复合物的调节作用

抗体产生是由多细胞完成的,Miller等在60年代,首先证明了淋巴细胞是不均一的细胞群。他用早期摘除鸡的胸腺和法氏囊的方法证明了有二类不同的的淋巴细胞,即T和B细胞。前者与细胞免疫有关,后者与抗体形成有关。

在对肿瘤的免疫应答中,某些抗体分子与肿瘤抗原结合后,不仅能介导任何免疫效应,还能阻止Tc对靶细胞的杀伤,实际上是抑制了细胞免疫效应,这类体称为封闭抗体。

抗原抗体复合物也有调节免疫应答的作用。免疫复合物抗原可与B细胞表面的抗原受体结合,复合物中的抗体可与B细胞表面的Fc受体结合,当B细胞表面的抗原受体的Fc受体因抗原抗体复合物的作用而发生交联时,就可产生抑制信号,可抑制B细胞分化为抗体形成细胞。但当抗原量多,抗体量少时形成的复合物可与抗原呈递细胞表面的Fc受体结合,则可增强抗原呈递细胞的功能,进而增强B细胞产生抗体的反应。所以免疫复合物的调节作用在反应初期由于抗原量大,多表现为增强反应,而到后期由于抗体量增多可中和抗原而起抑制作用。此外,抗体类别不同,作用也不同,在反应初期,当IgM产生多时,形成的复合物有增强作用,而后期IgG多时,则起抑制作用

表11-3 新生期摘除胸腺及法氏囊对免疫功能的影响

三、独特型网络的调节作用

图14-1 免疫复合物的免疫调节作用

全身X-线照射周围血淋巴细胞数Ig浓度抗体产生移植物排斥反应未身X-线照射148
000+++++++胸腺摘除9 000+++-法氏囊摘除13 200--+

与游离的Ig分子一样,B细胞的SIg分子高变区也存在着独特型标志。每一B细胞克隆的独特型标志能够被另一克隆B细胞的SIg所识别,构成一个相互识别的独特型网络;被识别的细胞受到抑制,而主动识别的细胞则活化。网络中的细胞可分成以下4组:①抗原反应细胞,外来抗原与ARC结合,使细胞增殖并产生相应的抗体,构成网络的主体;②ARC抑制细胞,即抗独特型组,可识别ARC的独特型标志,有抑制ARC反应的作用;③ARC激发细胞,为内影像组,该组细胞的独特位与外来抗原表位的结构相似,可模拟外来抗原对ARC构成刺激;④与ARC独特位相同的细胞,为非特异性平行组,可被ARC激活细胞识别,刺激其对ARC激活细胞识别,刺激其对ARC的抑制作用。后三类细胞也分别抑制细胞和刺激细胞,以构成自己的网络。

三、免疫细胞的调节作用

+阳性反应;-阴性反应

图7-6独特型网络作用示意图

T细胞和单核-巨噬细胞既是免疫应答的效应细胞,也参予免疫应答的调节。

Claman
给经X-线照射小鼠移入同系骨髓细胞和胸腺细胞,然后用羊红细胞免疫,结果证明只有同时移入两种细胞才能产生抗体。因此证明了抗体产生需要T和B细胞共同参予。

独特型网络调节的最终效应是抑制抗体的产生,使免疫应答终止。这一学说为免疫调节的研究开辟了新的领域,有关网络的精确机制及操纵方法尚需进一步研究。

TH细胞的调节作用

Unanue等在70年代又证明了巨噬细胞在抗体形成中的重要作用。他们应用纯化细胞的体外培养技术研究这一问题。根据小鼠细胞对玻璃面或塑料面的粘附性,可将脾细胞分为二种,其一为有粘附性细胞属巨噬细胞,另一种为非粘附性细胞属淋巴细胞,包括T和B细胞。当将这二种细胞分别与羊红细胞在体外培养时,皆不能产生抗体,只有在二种细胞混合培养时才能产生抗体,自此证明了Mφ也参予抗体的产生。

四、免疫应答的整体调节

抗原刺激在机体内发生的体液免疫或细胞免疫都是由抗原呈递细胞和T辅助细胞的相互作用开始的。TH细胞因分泌细胞因子种类不同而分成TH1和TH2两类,诱发体液免疫作用的是TH2,诱发细胞免疫起辅助作用的是TH1。

表11-4 T和B细胞在抗体产生中的作用

上述的免疫调节并非各自独立存在,而是相互影响,并且在整体上受神经-内分泌的调节,构成更加复杂的神经-内分泌-免疫调节网络。尽管免疫系统与神经系统和内分泌系统没有解剖学上的直接联系,但通过小分子介质可以沟通这三个系统。已有资料表明,免疫细胞可以表达某些神经递质的受体,而某些神经细胞上也发现有细胞因子的受体。虽然这些受体的确切作用尚未得到证实,但无疑这是系统间相互作用的物质基础。

TH1和TH2还可通过各自分泌的细胞因子相互制约。TH1细胞主要产生IL-2和IFN-r,后者可抑制TH2增殖和功能,而TH2产生IL-4、IL-5和IL-10,特别是IL-10是个重要的免疫抑制因子,它可抑制TH1分泌IL-2和IFN-r,抑制MHCⅡ类分子的表达。并可抑制Mф产生IL-1、IL-6等。

X-线照射鼠入的细胞抗体产生脾细胞++胸腺细胞±骨髓细胞+胸腺细胞+骨髓细胞+++

现已证明雌激素、雄激素和皮质醇等可抑制免疫应答,而生长素、甲状腺素和胰岛素等则有免疫促进作用。乙酰胆碱、肾上腺素、去甲肾上腺素、多巴胺等神经递质对淋巴活性的影响都有报道,尤其内啡肽与脑肽对免疫应答的影响已受到重视,并证明它们可促进T细胞增殖和NK细胞的杀伤活性;而对抗体的产生则表现抑制作用。

TS细胞的调节作用

表11-5 Mφ在抗体产生中的作用

大量的临床观察和实验研究表明,精神因素和条件反射对免疫应答也有显著的影响,但其作用途径及机制尚不清楚。

在免疫应答过程中,经辅助性诱导T细胞的作用可活化抑制性T细胞,使之分化成为效应TS细胞。它可分泌抗原特异及非特异抑制因子,可抑制杀伤性T细胞、辅助性T细胞及B细胞的功能,发挥负反馈调节作用。如此,当外来抗原侵入机体后经APC活化TH细胞以后启动正免疫应答,产生效应分子和效应细胞以清除外来抗原。与此同时在免疫应答后期可启动TS细胞使之活化及分化发育为效应TS细胞,以抑制免疫应答,籍以维持机体的免疫稳定平衡。

体外培养细胞抗体产生粘附细胞+羊红细胞

TC细胞的调节作用

非粘附细胞+羊红细胞

T细胞抑制免疫应答也可通TC的作用,因为TC可针对T或B细胞表面TCR或BCR可变区的独特型决定基而起特异杀伤作用。由于TC细胞杀伤T或B细胞而引起免疫抑制作用。

粘附细胞

四、独特型网络调节

+ +羊红细胞

免疫网络学说的提出

非粘附细胞-

这一学说是Jerne根据现代免疫学对抗体分子独特型的认识而提出的。这一学说认为在抗原刺激发生之前,机体处于一种相对的免疫稳定状态,当抗原进入机体后打破了这种平衡,导致了特异抗体分子的产生,当达到一定量时将引起抗Ig分子独特型的免疫应答,即抗抗体的产生。因此抗体分子在识别抗原的同时,也能被其它抗体分子所识别。这一点无论对血流中的抗体分子或是存在于淋巴细胞表面作为抗原受体的Ig分子都是一样的。在同一动物体内一组抗体分子亦可被另一组淋巴细胞表面抗独特型抗体分子所识别。而一组淋巴细胞表面抗原受体分子亦可被另一组淋巴细胞表面抗独特型抗体分子所识别。这样在体内应形成了淋巴细胞与抗体分子所组成的网络结构。网络学说认为,这种抗抗体的产生在免疫应答的调节中起着重要作用。使受抗原刺激增殖的克隆受到抑制,而不至于无休止地进行增殖。籍以维持免疫应答的稳定平衡。

独特型网络的细胞

+++

独特型决定簇存在于Ig的V区,也可存在于各类T细胞及B细胞的抗原识别受体的V区。因此在体内形成由独特型和抗独特型组成的免疫网络。

表11-6 促进B细胞增殖和分化的细胞因子

就淋巴细胞来说,构成这种网络结构的淋巴细胞有四种类型。当抗原进入机体后可与相应的抗原反应细胞相结合,进行增殖、分化并产生抗体分子。这种抗原反应细胞可与另外三种淋巴细胞构成网络。一组是独特型反应细胞,即抗独特型淋巴细胞组,能识别抗原受体的独特型,具有抑制抗原反应淋巴细胞的作用,另一组能增强抗原反应淋巴细胞的作用,它的受体带有与抗原构型相同的独特型,因此也能被抗原反应细胞所识别,Jerne称此组淋巴细胞为内影像组。内影像概念是免疫网络理论的重要组成部分。第三组淋巴细胞为非特异平行组,其抗原识别受体与抗原反应细胞不同,但独特型却与之相同,本组细胞可促进独特型细胞的活性,可加强对网络的抑制作用。同样这三组淋巴细胞也各自通过其独特型的联系和其它淋巴细胞也形成网络,如此不断扩展。所以机体对某一特定抗原应答不只表现为抗原反应细胞的应答,而是通过独特型联结起来的一个庞大的免疫网络整体反应,它们通过连续不断的识别过程,产生促进或抑制作用,以维持机体免疫应答的相对稳定状态。

名称作用IL-1

图14-2 免疫网络学说

IL-4

独特型网络理论的应用意义

IL-5

独特型理论为人工调控免疫应答提供新的思路,特别是处于超敏状态下如过敏症、自身免疫病和器官移植时,已有利用抗Id抗体的抑制作用进行实验治疗成功的报导。例如用B大鼠的移植抗原注射A大鼠,自A品系大鼠获得抗体,用此抗体对A大鼠进行免疫产生抗Id抗体就可抑制由T细胞介导的对B移植抗原的排斥反应。这可能因为抗-Id反应灭活了引起排斥反应的淋巴细胞,也就是抗-Id封闭了B细胞受体上的Id。另外一种完全不同的方法是应用抗原内影像的抗-Id刺激抗原特异T抑制细胞活化,能阻断对同一抗原上对其他抗原决定簇起反应的B细胞活化,这也就是抗原本身的桥梁作用。

IL-6

某些情况下也可应用抗原内影像即抗-Id代替抗原刺激产生抗体。这种情况用于抗原数量少,难以获得时,如某些寄生虫抗原、某些癌相关的胚胎抗原、用化学合成方法得到的抗原或用基因克隆法得到的重组抗原难以折叠成天然分子构型的蛋白质抗原,选择有抗原表位构型的抗-Id代替抗原进行免疫以克服抗原不足的困难。

IL-2促进B细胞活化与增殖

图14-3 内影像图解

促进活化B细胞增殖

促进B细胞分化

与IL-1协同

在同一时期Gershon等又证明了抑制性T细胞的存在,对免疫应答起抑制作用。因此TH和TS可视为免疫调节细胞,而TC和TD可视为细胞免疫的效应细胞。通过上述研究,证明了抗体产生需要三种细胞参予,即单核吞噬细胞系、T细胞系和B细胞系。从而否定了过去认为抗体产生是由单一淋巴细胞克隆产生的观点。因此抗体产生不只是涉及抗原与免疫细胞间的相互作用,即对抗原的识别和抗原的激发作用,同时也涉及免疫细胞间的相互作用,,即免疫细胞活化,增殖与分化过程。这二个过程是紧密交织在一起的,为此必须进一步探讨在免疫应答过程中,三种细胞各自发挥什么作用?以及它们之间的相互作用又是怎样进行的。

三、免疫细胞在抗体生成中的作用

上述三类细胞都参予抗体生成过程,但各自发挥的作用不同。现已证明Mφ抗原处理和呈递细胞,无特异识别抗原的功能。T细胞系主要是TH和TS,它们对免疫应答有调节功能,所以是免疫调节细胞,有特异识别抗原的功能。B细胞系既具有呈递抗原的作用又是产生抗体的细胞,也具有特异识别抗原的功能。

Mφ的作用

Mφ在免疫应答的全过程都发挥重要作用,在抗原识别过程中,即在免疫应答的诱导期,它表现为具有摄取、处理加工、存贮和呈递抗原的作用。它活化后还能分泌多种细胞因子,其合成和分泌的IL-1有促进T和B细胞的活化作用。因此,不能认为Mφ只是机械的将抗原决定簇呈递给淋巴细胞,它还具有调节淋巴细胞功能的作用。

抗原性物质进入体内后,必须先经Mφ摄取、加工处理,然后才能呈递给淋巴细胞。Mφ是有吞噬细胞功能的细胞,已证明在其细胞表面有多种受体分子,但无抗原识别受体。它主要是以吞噬、吞饮和被动吸附等方式捕捉抗原,可摄取任何抗原性特质,所以是非特异性的摄取抗原性物质。

摄入的抗原大分子,可在细胞内被降解为许多小肽片段。其中一些免疫原性决定簇可与细胞内的自己MHCⅡ类分子相结合,然后运送至细胞膜表面,形成所谓修饰的自身复合物分子此即Mφ对抗原的处理和加工过程。

Mφ将这种复合物分子,呈递给有抗原识别功能的淋巴细胞,才能激发免疫应答。不难看出,识别这种复合物的抗原识别受体,必须是既能识别异种抗原X,又能同时识别自已MHC分子。这就是免疫细胞间相互作用的MHC限制性的由来。

淋巴细胞的作用

淋巴细胞具有抗原识别受体,所以T和B细胞都是抗原识别细胞。每一细胞克隆可识别一种抗原决定簇,所以这种识别是有特异性的。B细胞表面抗原识别受体是膜Ig分子,它可识别天然蛋白质抗原分子表面的构像抗原决定簇,在识别抗原时无MHc
限制性。而T细胞抗原识别受体为异二聚体分子,即TCRαβ,它能同时识别经加工处理的序列决定簇肽片段和自己MHC分子,所以有MHC限制性。

四、细胞因子在抗体产生中的作用

细胞因子在抗体产生应答过程中的作用有下述特点:

1.细胞因子的作用既无抗原特异性也无MHC限制性当TH细胞受刺激活化后,它所分泌的细胞因子就可作用于任何抗原特异性的B细胞和任何MHC单倍型的B细胞。

2.在B细胞产生免疫应答的不同时期有不同的细胞因子起作用即B细胞的增殖期与分化期,或Ig的分泌期可有不同的细胞因子在起作用。此外,不同的细胞因子间的组合有的起拮抗作用,有的起协同作用。

3.细胞因子还可作用于旁路B细胞使之活化这些B细胞对抗体应答的抗原没有特异性。它们存在于抗原刺激的特异B细胞周围,在抗原活化特异B细胞时,因产生细胞因子而被活化并产生非特异抗体。

4.在刺激B细胞增殖分化的细胞因子中,有些是来源于巨噬细胞或其他非T细胞所产生。